Math 304 (Spring 2015) - Homework 7

Problem 1.

Find the angle between the vectors $\vec{x}=(1,1,1)$ and $\vec{y}=(1,0,1)$. (You can express your answer in terms of $\arccos \theta$.)

Solution: Let θ be the angle between \vec{x} and \vec{y}. Then

$$
\cos \theta=\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|\|\vec{y}\|}=\frac{2}{\sqrt{6}} .
$$

So $\theta=\arccos \left(\frac{2}{\sqrt{6}}\right)$.

Problem 2.

Let V be the subspace of \mathbb{R}^{3} spanned by $v_{1}=(1,0,1)$ and $v_{2}=(1,0,0)$. Find a basis of V^{\perp}.

Solution: V^{\perp} consists of vectors (a, b, c) which satisfy the following conditions.

$$
\left\{\begin{array}{l}
(1,0,1) \cdot(a, b, c)=0 \\
(1,0,0) \cdot(a, b, c)=0
\end{array}\right.
$$

That is,

$$
\left\{\begin{array}{l}
a+c=0 \\
a=0
\end{array}\right.
$$

So we have

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
s \\
0
\end{array}\right)
$$

It follows that

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

forms a basis of V^{\perp}.

Problem 3.

Suppose W is a subspace of \mathbb{R}^{n}. Show that W^{\perp} is also a subspace of \mathbb{R}^{n}.

Solution: To show that W^{\perp} is a subspace of \mathbb{R}^{n}, we need to show that W^{\perp} is nonempty, and is closed under addition and scalar multiplication.
(i) The zero vector 0 is certainly in W^{\perp}. So W^{\perp} is nonempty.
(ii) If $w_{1}, w_{2} \in W^{\perp}$, that is, $w_{1} \cdot v=0$ and $w_{2} \cdot v=0$ for all $v \in W$, then

$$
\left(w_{1}+w_{2}\right) \cdot v=w_{1} \cdot v+w_{2} \cdot v=0+0=0 .
$$

This implies that $w_{1}+w_{2} \in W^{\perp}$.
(iii) If $w_{1} \in W^{\perp}$, and $\alpha \in \mathbb{R}$, then

$$
\left(\alpha w_{1}\right) \cdot v=\alpha\left(w_{1} \cdot v\right)=0
$$

for all $v \in W^{\perp}$. This implies $\alpha w_{1} \in W^{\perp}$.

Problem 4.

Let $v=(1,2,-2,0)$ and $w=(2,0,3,1)$ in \mathbb{R}^{4}.
(a) Find the scalar projection of v onto w.
(b) Find the vector projection of v onto w.

Solution:

(a) The scalar projection of v onto w is given by

$$
\frac{v \cdot w}{\|w\|}=\frac{-4}{\sqrt{14}}
$$

(b) The vector projection of v onto w is given by

$$
\left(\frac{v \cdot w}{\|w\|^{2}}\right) w=\frac{-2}{7}(2,0,3,1)=\left(\frac{-4}{7}, 0, \frac{-6}{7}, \frac{-2}{7}\right)
$$

Problem 5.

(a) Find the distance between the point $(2,3,4)$ and the plane

$$
x+y+z=3
$$

(b) Recall that we use three equations to describe a line in \mathbb{R}^{3}. For example a line that passes through the point $(1,-1,5)$ with the direction $\vec{v}=(2,3,4)$ is given by

$$
x=2 t+1, \quad y=3 t-1, \quad z=4 t+5
$$

Now given two lines

$$
L_{1}: x=t+1, y=3 t+1, z=2 t-1
$$

and

$$
L_{2}: x=2 t-2, y=2 t+3, z=t+1
$$

suppose a plane H is parallel to both L_{1} and L_{2}. Moreover, H passes through the point $(0,1,0)$. Find the equation of the plane H.

Solution:

(a) Pick a point on the plane. For example, $(0,0,3)$ is a point on the plane. Form the vector that goes from the point $(2,3,4)$ to this point $(0,0,3)$. This is

$$
v=(-2,-3,-1)
$$

Now the distance is given by the scalar projection of v onto the normal vector $n=(1,1,1)$ of the plane

$$
\frac{v \cdot n}{\|n\|}=\frac{-6}{\sqrt{3}}=-2 \sqrt{3}
$$

In fact, we need to the absolute value of this number, since the distance is always nonnegative. So the distance is

$$
2 \sqrt{3}
$$

(b) To find the equation of the plane, we need to find its normal vector. The normal vector n of the plane is orthogonal to both direction vectors of the lines. Denote the direction vectors of the lines by

$$
v_{1}=(1,3,2), \quad v_{2}=(2,2,1)
$$

So n is the cross product of v_{1} and v_{2} :

$$
n=\left|\begin{array}{lll}
i & j & k \\
1 & 3 & 2 \\
2 & 2 & 1
\end{array}\right|=(-1,3,-4)
$$

So the equation of the plane is

$$
-x+3 y-4 z=d
$$

for some d. Plug in the point $(0,1,0)$ into this equation to solve for d, and we get

$$
-x+3 y-4 z=3
$$

