Math 304 (Spring 2015) - Homework 7

Problem 1.

Find the angle between the vectors $\vec{x} = (1, 1, 1)$ and $\vec{y} = (1, 0, 1)$. (You can express your answer in terms of $\arccos \theta$.)

Solution: Let θ be the angle between \vec{x} and \vec{y} . Then $\cos \theta = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|} = \frac{2}{\sqrt{6}}.$ So $\theta = \arccos(\frac{2}{\sqrt{6}}).$

Problem 2.

Let V be the subspace of \mathbb{R}^3 spanned by $v_1 = (1, 0, 1)$ and $v_2 = (1, 0, 0)$. Find a basis of V^{\perp} .

Solution: V^{\perp} consists of vectors (a, b, c) which satisfy the following conditions.

 $\begin{cases} a+c=0\\ a=0 \end{cases}$

,	$(1,0,1) \cdot (a,b,c) = 0$
Ň	$(1,0,0) \cdot (a,b,c) = 0$

That is,

So we have

It follows that

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ s \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

forms a basis of V^{\perp} .

Problem 3.

Suppose W is a subspace of \mathbb{R}^n . Show that W^{\perp} is also a subspace of \mathbb{R}^n .

Solution: To show that W^{\perp} is a subspace of \mathbb{R}^n , we need to show that W^{\perp} is nonempty, and is closed under addition and scalar multiplication.

- (i) The zero vector 0 is certainly in W^{\perp} . So W^{\perp} is nonempty.
- (ii) If $w_1, w_2 \in W^{\perp}$, that is, $w_1 \cdot v = 0$ and $w_2 \cdot v = 0$ for all $v \in W$, then

$$(w_1 + w_2) \cdot v = w_1 \cdot v + w_2 \cdot v = 0 + 0 = 0.$$

This implies that $w_1 + w_2 \in W^{\perp}$.

(iii) If $w_1 \in W^{\perp}$, and $\alpha \in \mathbb{R}$, then

$$(\alpha w_1) \cdot v = \alpha (w_1 \cdot v) = 0$$

for all $v \in W^{\perp}$. This implies $\alpha w_1 \in W^{\perp}$.

Problem 4.

Let v = (1, 2, -2, 0) and w = (2, 0, 3, 1) in \mathbb{R}^4 .

- (a) Find the scalar projection of v onto w.
- (b) Find the vector projection of v onto w.

Solution:

(a) The scalar projection of v onto w is given by

$$\frac{v \cdot w}{\|w\|} = \frac{-4}{\sqrt{14}}$$

(b) The vector projection of v onto w is given by

$$\left(\frac{v \cdot w}{\|w\|^2}\right)w = \frac{-2}{7}(2,0,3,1) = \left(\frac{-4}{7},0,\frac{-6}{7},\frac{-2}{7}\right)$$

Problem 5.

(a) Find the distance between the point (2, 3, 4) and the plane

$$x + y + z = 3$$

(b) Recall that we use three equations to describe a line in \mathbb{R}^3 . For example a line that passes through the point (1, -1, 5) with the direction $\vec{v} = (2, 3, 4)$ is given by

$$x = 2t + 1, \quad y = 3t - 1, \quad z = 4t + 5.$$

Now given two lines

$$L_1: x = t + 1, y = 3t + 1, z = 2t - 1,$$

and

$$L_2: x = 2t - 2, y = 2t + 3, z = t + 1,$$

suppose a plane H is parallel to both L_1 and L_2 . Moreover, H passes through the point (0, 1, 0). Find the equation of the plane H.

Solution:

(a) Pick a point on the plane. For example, (0, 0, 3) is a point on the plane. Form the vector that goes from the point (2, 3, 4) to this point (0, 0, 3). This is

$$v = (-2, -3, -1)$$

Now the distance is given by the scalar projection of v onto the normal vector n = (1, 1, 1) of the plane

$$\frac{v \cdot n}{\|n\|} = \frac{-6}{\sqrt{3}} = -2\sqrt{3}$$

In fact, we need to the absolute value of this number, since the distance is always nonnegative. So the distance is

 $2\sqrt{3}$

(b) To find the equation of the plane, we need to find its normal vector. The normal vector n of the plane is orthogonal to both direction vectors of the lines. Denote the direction vectors of the lines by

$$v_1 = (1, 3, 2), \quad v_2 = (2, 2, 1)$$

So n is the cross product of v_1 and v_2 :

$$n = \begin{vmatrix} i & j & k \\ 1 & 3 & 2 \\ 2 & 2 & 1 \end{vmatrix} = (-1, 3, -4)$$

So the equation of the plane is

$$-x + 3y - 4z = d$$

for some d. Plug in the point (0, 1, 0) into this equation to solve for d, and we get

$$-x + 3y - 4z = 3.$$